NCERT Exemplar Class 11 Maths Chapter 3 Trigonometric Functions

In this chapter, we provide NCERT Exemplar Problems Solutions for Class 11 Maths Chapter 3 Trigonometric Functions for English medium students, Which will very helpful for every student in their exams. Students can download the latest NCERT Exemplar Problems Solutions for Class 11 Maths Chapter 3 Trigonometric Functions pdf, free NCERT Exemplar Problems Solutions for Class 11 Maths Chapter 3 Trigonometric Functions book pdf download. Now you will get step by step solution to each question.

TextbookNCERT
ClassClass 11
SubjectMaths
ChapterChapter 3
Chapter NameTrigonometric Functions
CategoryNCERT Exemplar

NCERT Exemplar Class 11 Maths Chapter 3  Trigonometric Functions

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-1
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-2
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-3
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-4

Q4. If cos (α + ) =4/5 and sin (α- )=5/13 , where α lie between 0 and π/4, then find the value of tan 2α.

Q6. Prove that cos cos /2- cos 3 cos 9/2 = sin 7/2 sin 4 .

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-7

Q7. If a cos θ + b sin θ =m and a sin θ -b cosθ = n, then show that a2 + b2-m2 + n2

Sol: We have, a cos θ + b sin θ = m (i)
and a sin θ -bcos θ = n (ii)
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-8

Q8. Find the value of tan 22°30′

Q9. Prove that sin 4A = 4 sin A cos3A – 4 cos A sin3 A.

Sol: L.H.S. = sin 4A
= 2 sin 2A- cos 2A = 2(2 sin A cosA)(cos2 A – sin2 A)
= 4 sin A • cos3 A – 4 cos A sin3 A = R.H.S.

Q10. If tan + sin = m and tan – sin = n, then prove that m2-n2 = 4 sin tan

Sol:We have, tan + sin = m   (i)
And tan -sin =n  (ii)
Now,         m + n = 2 tan
And          m – n = 2 sin.
(m + n)(m -n) = 4 sin 6
tan m2 -n2 = 4 sin -tan

Q11. If tan (A + B) =p and tan (A – B) = q, then show that tan 2A = p+q / 1 – pq

Sol: We have tan (A + B) =p and tan (A – B) = q
tan2A = tan [(A + B) + (A-B)]

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-10

Q12. If cos + cos = 0 = sin + sin β, then prove that cos 2 + cos 2β = -2 cos (α + ).

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-12
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-13
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-14

Q15.  If sin θ+ cos θ =1, then find the general value of θ

Q16. Find the most general value of θ satisfying the equation tan θ = -1 and cos θ = 1/√2 .
Sol:
We have tan θ = -1 and cos θ =1/√2 .
So, θ lies in IV quadrant.
θ = 7/4
So, general solution is θ = 7π/4 + 2 n π, n∈ Z

Q17. If cot θ + tan θ = 2 cosec θ, then find the general value of θ
Sol: 
Given that, cot θ + tan θ = 2 cosec θ

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-16

Q18. If 2 sin2 θ =3 cos θ, where O≤θ≤2, then find the value of θ

Q19. If sec x cos 5x + 1 = 0, where 0 < x <π/2 , then find the value of x.

Long Answer Type Questions

Q20. If sin(θ + α) = a and sin(θ + β) = b , then prove that cos2(α – β) – 4abcos(α – β) = 1-2a2 -2b2

Sol: We have sin(θ + α) = a —(i)
sin(θ + β) = b ——-(ii)

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-19
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-20
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-21

Q22. Find the value of the expression

Q23. If a cos 2+b sin 2 = c has α and β as its roots, then prove that tan α +tan β = 2b/a+c

Q24. If x = sec ϕ-tanϕandy = cosec ϕ + cot ϕ then show that xy + x -y +1=0.

Q25. If lies in the first quadrant and cos =8/17 , then find the value of cos (30° + ) + cos (45° – ) + cos (120° – ).

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-25
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-26

Q26. Find the value of the expression cos4 π/8 + cos4 3π/8  + cos4 5π/8  + cos47π/8

Q27. Find the general solution of the equation 5 cos2 +7 sin2 -6 = 0.

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-28

Q28. Find the general solution of‘the equation sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x.
Sol: We have, (sin x + sin 3x) – 3 sin 2x = (cos x + cos 3x) – 3 cos 2x
=> 2 sin 2x cos x – 3 sin 2x = 2 cos 2x.cos x – 3 cos 2x
=> sin 2x(2 cos x – 3) = cos 2x(2 cos x – 3)
=> sin 2x = cos 2x (As cos x ≠ 3/2)
=>              tan 2x = 1    => tan 2x = tan π/4
=>              2x = nπ + π/4 , n∈Z
x = nπ/2 +π/8 , n∈Z

Q29. Find the general solution of the equation (√3- l)cos + (√3+ 1)sin = 2.

Objective Type Questions

Q30. If sin + cosec =2, then sin2 + cosec2 is equal to
(a) 1
(b) 4                          
(c) 2                         
(d) None of these

Q31. If f(x) = cos2 x + sec2 x, then ‘
(a) f(x) <1             
(b) f(x) = 1              
(c) 2 <f(x) < 1      
(d) fx) ≥ 2

Q32. If tan θ = 1/2 and tan ϕ = 1/3, then the value of θ + ϕ is

Q33. Which of the following is not correct?

(a) sin θ = – 1/5 (b) cos θ = 1                 (c) sec θ = -1/2         (d) tan θ = 20
Sol: (c)
We know that, the range of sec θ is R – (-1, 1).
Hence, sec θ cannot be equal to -1/2

Q34. The value of tan 1° tan 2° tan 3° … tan 89° is
(a) 0
(b) 1
(c) 1/2
(d) Not defined

Sol: (b)
tan 1° tan 2° tan 3° … tan 89°
= [tan 1° tan 2° … tan 44°] tan 45°[tan (90° – 44°) tan (90° – 43°)… tan (90° – 1°)]
= [tan 1° tan 2° … tan 44°] [cot 44° cot 43°……. cot 1°]
= 1-1… 1-1 = 1

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-32
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-33
Q36. The value of cos 1° cos 2° cos 3° … cos 179° is
(a) 1/√2
(b) 0
(c) 1
(d) -1

Sol: (b)
Since cos 90° = 0, we have
cos 1° cos 2° cos 3° …cos 90°… cos 179° = 0

Q37. If tan θ = 3 and θ lies in the third quadrant, then the value of sin θ is

Q38. The value of tan 75° – cot 75° is equal to

Q39. Which of the following is correct?
(a) sin 1° > sin 1                                     
(b) sin 1° < sin 1
(c) sin l° = sin l
(d) sin l° = π/18° sin 1

Sol: We know that, in first quadrant if θ is increasing, then sin θ is also increasing.
∴sin 1° < sin 1 [∵ 1 radian = 57◦30′]
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-36

Q41. The minimum value of 3 cos x + 4 sin x + 8 is
(a) 5
(b) 9
(c) 7
(d) 3
Sol: (d)
3 cos x + 4sin x + 8 = 5 (3/5 cos x + 4/5sin x) + 8
= 5(sin α cos x + cos α sin x) + 8
= 5 sin(α + x) + 8, where tan α = 3/4

Q42. The value of tan 3A – tan 2A – tan A is
(a) tan 3A . tan 2A . tan A
(b) -tan 3A .tan 2A . tan A
(c) tan A . tan 2A – tan 2A . tan 3A – tan 3A . tan A
(d) None of these
Sol: (a)
3A= A+ 2A
=> tan 3A = tan (A + 2A)
=> tan 3 A = tanA + tan2A/ 1 – tan A . tan 2A
=> tan A + tan 2A = tan 3A – tan 3A• tan 2A . tan A
=> tan 3 A – tan 2A – tan A = tan 3A . tan 2A . tan A

Q43. The value of sin (45° + )- cos (45° – ) is
(a) 2 cos              
(b) 2 sin              
(c) 1                         
(d) 0
Sol: (d)
sin (45° + ) – cos (45° – ) = sin (45° + ) – sin (90° – (45° – ))
= sin (45° + ) – sin (45°+ ) = 0

Q44. The value of (π/4+ ) cot (π/4- ) is
(a) -1                       
(b)  0  
(c)  1                     
(d)   Not defined
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-37
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-38

Q46. The value of cos 12° + cos 84° + cos 156° + cos 132° is
(a) 1/2            
(b) 1                       
(c) -1/2            
(d) 1/8

Q47. If tan A = 1/2 and tan B = 1/3 then tan (2A + B) is equal to
(a) 1
(b) 2
(c) 3
(d) 4

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-40
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-41
ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-42

Q49. The value of sin 50° – sin 70° + sin 10° is equal to
(a) 1                       
(b) 0                       
(c) 1
(d) 2

ncert-exemplar-problems-class-11-mathematics-chapter-3-trigonometric-functions-43

Q50. If sin + cos =1, then the value of sin 2 is
(a) 1                      
(b) 1   
(c) 0                        
(d) -1

All Chapter NCERT Exemplar Problems Solutions For Class 11 Maths

—————————————————————————–

All Subject NCERT Exemplar Problems Solutions For Class 11

*************************************************

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share ncertexemplar.com to your friends.

Leave a Comment

Your email address will not be published.